Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: covidwho-1166661

ABSTRACT

SARS-CoV-2 (CoV2) antibody therapies, including COVID-19 convalescent plasma (CCP), monoclonal antibodies, and hyperimmune globulin, are among the leading treatments for individuals with early COVID-19 infection. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the 4 endemic human coronavirus (HCoV) genomes in 126 CCP donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies against CoV2. We also found that plasma preferentially reactive to the CoV2 spike receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a 2-peptide serosignature that identifies plasma donations with high anti-spike titer, but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting desired therapeutics and understanding the complex immune responses elicited by CoV2 infection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Coronavirus/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibody Specificity , Coronavirus/classification , Coronavirus/genetics , Cross Reactions , Endemic Diseases , Genome, Viral , Humans , Immunization, Passive , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Immunodominant Epitopes/immunology , Models, Molecular , Pandemics , SARS-CoV-2/genetics , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
2.
Mod Pathol ; 34(6): 1093-1103, 2021 06.
Article in English | MEDLINE | ID: covidwho-1065837

ABSTRACT

There is an urgent and unprecedented need for sensitive and high-throughput molecular diagnostic tests to combat the SARS-CoV-2 pandemic. Here we present a generalized version of the RNA-mediated oligonucleotide Annealing Selection and Ligation with next generation DNA sequencing (RASL-seq) assay, called "capture RASL-seq" (cRASL-seq), which enables highly sensitive (down to ~1-100 pfu/ml or cfu/ml) and highly multiplexed (up to ~10,000 target sequences) detection of pathogens. Importantly, cRASL-seq analysis of COVID-19 patient nasopharyngeal (NP) swab specimens does not involve nucleic acid purification or reverse transcription, steps that have introduced supply bottlenecks into standard assay workflows. Our simplified protocol additionally enables the direct and efficient genotyping of selected, informative SARS-CoV-2 polymorphisms across the entire genome, which can be used for enhanced characterization of transmission chains at population scale and detection of viral clades with higher or lower virulence. Given its extremely low per-sample cost, simple and automatable protocol and analytics, probe panel modularity, and massive scalability, we propose that cRASL-seq testing is a powerful new technology with the potential to help mitigate the current pandemic and prevent similar public health crises.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , High-Throughput Nucleotide Sequencing/methods , SARS-CoV-2/genetics , Genotype , Humans , Oligonucleotide Probes , RNA, Viral/analysis
SELECTION OF CITATIONS
SEARCH DETAIL